Header Ad

Identifican nacimiento de un elemento pesado tras la colisión de dos estrellas de neutrones

Por primera vez, un elemento pesado recién formado, el estroncio, se ha detectado en el espacio.
La fusión fue observada por el espectrógrafo X-shooter de ESO, instalado en el Very Large Telescope.
En la Tierra, el estroncio se encuentra de forma natural en el suelo y se concentra en ciertos minerales. Sus sales se utilizan para dar un color rojo brillante a los fuegos artificiales.

Un equipo de investigadores europeos confirma que los elementos más pesados del universo pueden formarse en fusiones de estrellas de neutrones. Detectaron las huellas de estos elementos gracias a los restos explosivos que dejan estas fusiones.

Para llegar a estos resultados, los científicos utilizaron datos del instrumento X-shooter, instalado en el VLT (Very Large Telescope) del Observatorio Europeo del Sur (ESO, por sus siglas en inglés). En 2017, tras la detección de ondas gravitacionales que pasaban por la Tierra, ESO apuntó sus telescopios en Chile, incluido el VLT, a la fuente: una fusión de estrellas de neutrones llamada GW170817.

“Tras reanalizar los datos de la fusión de 2017 hemos identificado la firma de un elemento pesado en esta bola de fuego: el estroncio, demostrando que la colisión de estrellas de neutrones crea este elemento en el universo”, afirmó el autor principal del estudio, Darach Watson, de la Universidad de Copenhague, Dinamarca en un comunicado de ESO.

Los astrónomos conocen los procesos físicos que crean los elementos desde la década de 1950. “Ahora sabemos que los procesos que crearon los elementos tuvieron lugar, principalmente, en estrellas ordinarias, en explosiones de supernovas o en las capas externas de estrellas viejas. Pero, hasta ahora, desconocíamos la ubicación del proceso final, conocido como captura rápida de neutrones, que creó los elementos más pesados de la tabla periódica”.

La captura rápida de neutrones es un proceso en el que un núcleo atómico captura neutrones lo suficientemente rápido como para permitir la creación de elementos muy pesados. Aunque muchos elementos se producen en los núcleos de las estrellas, la creación de elementos más pesados que el hierro, como el estroncio, requiere de ambientes aún más calientes con muchos neutrones libres. La captura rápida de neutrones sólo ocurre de forma natural en ambientes extremos donde los átomos son bombardeados por un gran número de neutrones.

“Es la primera vez que podemos asociar directamente el material de nueva creación formado a través de la captura de neutrones con una fusión de estrellas de neutrones”, añadió Camilla Juul Hansen, del Instituto Max Planck de Astronomía, en Heidelberg, quien desempeñó un importante papel en el estudio.

Los científicos empiezan ahora a entender mejor las fusiones de estrellas de neutrones y las kilonovas (secuelas cataclísmicas o restos explosivos de este tipo de fusión). Debido a la limitada comprensión de estos nuevos fenómenos y a otras complejidades en los espectros que el instrumento X-shooter del VLT tomó de la explosión, los astrónomos no habían podido identificar elementos individuales hasta ahora.

Tras la fusión de GW170817, la flota de telescopios de ESO comenzó a monitorear la emergente explosión de kilonova, en un amplio rango de longitudes de onda. El análisis inicial de estos espectros sugirió la presencia de elementos pesados en la kilonova, pero hasta ahora los astrónomos no habían podido identificar elementos individuales.